Complex Mesh Motion

— 2D meshing, pimpleFoam, arbitrary coupled mesh interface (ACMI), passive scalar, function objects, fvOptions —

In engineering applications, it is common to have active parts which connect and disconnect during a movement. Using the arbitrary coupled mesh interface (ACMI) in OpenFOAM®, one can use dynamic elements that connect and disconnect during the time. The usage of such boundary conditions and the correct set-up is the principal focus of this training case.

— The ACMI boundary conditions allows one to couple and decouple regions during the simulation —

This 2D case was the first investigation into the ACMI boundary condition of Tobias. The tutorial does not focus on physical correctness nor describe a real phenomenon. It is just a demonstration case that allows one to get the relevant information to generate an ACMI boundary condition. The training case further uses the function object capability to build a passive scalar equation on the fly. Additionally, a source term is specified within the equation using the fvOptions methodology. The numerical algorithm is set-up as PIMPLE, and the Courant number was set to six. Tobias wants to apologize officially about the statement he made in February on LinkedIn against DHCAE regarding the fact that they used the inspiration of my tutorial to create an own one. Tobias feels honored to inspire people to make similar simulations. Furthermore, the content was always published under the GNU GPL v3. Thus, Tobias was incorrect and is happy to say sorry again, officially on his website. 

Rotating Conus Picture 1
Rotating Conus Picture 2
Rotating Conus Picture 3

— Published under the GNU General Public License 3

Over the last ten years, Tobias tried to publish a wide range of different materials related to OpenFOAM® and CFD. You know it much better than he does if the content is worth to be supported. If you want to thank Tobias for the work he did, feel free to tell the community your opinion about the work Tobias Holzmann is doing or you can email your thoughts directly to »This email address is being protected from spambots. You need JavaScript enabled to view it.«. Keep in mind that the work that was done here took much time, and it is not self-evident that Tobias Holzmann shares all his work, knowledge, and attitude for free and keep the data up to date. Hosting the material, updating the data, and keeping up interesting work for the community does take much time and also money. Supporting Tobias can be done by donating any amount you would like to give or help him with his projects.

Support the work of Tobias Holzmann

The available training cases are tested and built for different OpenFOAM® versions. During the tests, only the OpenFOAM Foundation version of OpenFOAM® was used. Furthermore, the following software packages are required for most of the training cases: Salome®, ParaView®, and for optimization tasks one also needs DAKOTA®. The cases might work with the ESI version of OpenFOAM® too (not tested). Additionally, there is no support for Windows-based OpenFOAM® versions.

Released 22.04.2020 — Downloads:
Released 22.04.2020 — Downloads:
Released 22.04.2020 — Downloads: